Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation.
نویسندگان
چکیده
Small heat-shock proteins (sHsps) are molecular chaperones that play an important protective role against cellular protein misfolding by interacting with partially unfolded proteins on their off-folding pathway, preventing their aggregation. Polyglutamine (polyQ) repeat expansion leads to the formation of fibrillar protein aggregates and neuronal cell death in nine diseases, including Huntington disease and the spinocerebellar ataxias (SCAs). There is evidence that sHsps have a role in suppression of polyQ-induced neurodegeneration; for example, the sHsp alphaB-crystallin (alphaB-c) has been identified as a suppressor of SCA3 toxicity in a Drosophila model. However, the molecular mechanism for this suppression is unknown. In this study we tested the ability of alphaB-c to suppress the aggregation of a polyQ protein. We found that alphaB-c does not inhibit the formation of SDS-insoluble polyQ fibrils. We further tested the effect of alphaB-c on the aggregation of ataxin-3, a polyQ protein that aggregates via a two-stage aggregation mechanism. The first stage involves association of the N-terminal Josephin domain followed by polyQ-mediated interactions and the formation of SDS-resistant mature fibrils. Our data show that alphaB-c potently inhibits the first stage of ataxin-3 aggregation; however, the second polyQ-dependent stage can still proceed. By using NMR spectroscopy, we have determined that alphaB-c interacts with an extensive region on the surface of the Josephin domain. These data provide an example of a domain/region flanking an amyloidogenic sequence that has a critical role in modulating aggregation of a polypeptide and plays a role in the interaction with molecular chaperones to prevent this aggregation.
منابع مشابه
Effect of αB-Crystallin on Protein Aggregation in Drosophila
Disorganisation and aggregation of proteins containing expanded polyglutamine (polyQ) repeats, or ectopic expression of α-synuclein, underlie neurodegenerative diseases including Alzheimer's, Parkinson, Huntington, Creutzfeldt diseases. Small heat-shock proteins, such as αB-crystallin, act as chaperones to prevent protein aggregation and play a key role in the prevention of such protein disorga...
متن کاملCytoplasmic Ubiquitin-Specific Protease 19 (USP19) Modulates Aggregation of Polyglutamine-Expanded Ataxin-3 and Huntingtin through the HSP90 Chaperone
Ubiquitin-specific protease 19 (USP19) is one of the deubiquitinating enzymes (DUBs) involved in regulating the ubiquitination status of substrate proteins. There are two major isoforms of USP19 with distinct C-termini; the USP19_a isoform has a transmembrane domain for anchoring to the endoplasmic reticulum, while USP19_b contains an EEVD motif. Here, we report that the cytoplasmic isoform USP...
متن کاملThe diverse members of the mammalian HSP70 machine show distinct chaperone-like activities.
Humans contain many HSP (heat-shock protein) 70/HSPA- and HSP40/DNAJ-encoding genes and most of the corresponding proteins are localized in the cytosol. To test for possible functional differences and/or substrate specificity, we assessed the effect of overexpression of each of these HSPs on refolding of heat-denatured luciferase and on the suppression of aggregation of a non-foldable polyQ (po...
متن کاملHeat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT.
Heat shock transcription factor 1 (HSF1) is an important regulator of protein homeostasis (proteostasis) by controlling the expression of major heat shock proteins (Hsps) that facilitate protein folding. However, it is unclear whether other proteostasis pathways are mediated by HSF1. Here, we identified novel targets of HSF1 in mammalian cells, which suppress the aggregation of polyglutamine (p...
متن کاملMulti-domain misfolding: understanding the aggregation pathway of polyglutamine proteins.
The polyglutamine (polyQ) diseases consist of nine neurodegenerative diseases in which a polyQ tract expansion leads to protein misfolding and subsequent aggregation. Even when the causative proteins have the same length polyQ tract, there are differences in the severity and age of disease onset which implicate the polyQ flanking sequences as modulators of disease. Recent studies on the polyQ p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 23 شماره
صفحات -
تاریخ انتشار 2010